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Abstract

Theoretical and experimental considerations of free convective heat transfer from horizontal isothermal conic in

unlimited space are presented. In the theoretical part of the paper we introduced the curvilinear coordinate system

compatible with conical surface and gravity field. The equations of Navier–Stokes and Fourier–Kirchhoff were sim-

plified in this local orthogonal system. The resulting equation have been solved by asymptotic series in the vicinity of

horizontal element of the cone. The final Nusselt–Rayleigh relation as a function of the conic base angle was verified

experimentally. The experimental study was performed in water and air for conics with the angles equal to a ¼ 0

(vertical round plate), 30�, 45� and 60� and diameter of the base D ¼ 0:1 m. The experimental results are in a good

accordance (maximum within +8.7%) with the theory.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

The results of theoretical and experimental study of

free convective heat transfer from conical surfaces were

published and they are very useful to determine con-

vective heat losses from conical fragments of apparatus

in industrial or energetic installations, electronic equip-

ment, architectonic objects and so on by engineers and

designers. Unfortunately available dates are not com-

plete. There are some information on vertical faced

down or up cones [1–6] but for the horizontal ones we

have found the only paper, written by Oosthuizen [7]. In

the Churchill�s review paper [8] among about 120 results

devoted to free convection four positions are concerned

conical (only vertical) surfaces. Oosthuizen�s paper deal
only with the experimental study.

Hence the paper presents theoretical solution of the

natural convective heat transfer problem from the iso-

thermal surface of a horizontal conic. We also show the

experimental verification of the obtained analytical for-
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mulas. The experiments were performed in water and air

for conics with the base angle: a ¼ 0�, 30�, 45� and 60�.
The phenomenon of convective fluid flow pattern

for the configuration to be considered is complicated,

because of the gravity field breaks the axis symmetry

in comparison with vertical cones (Fig. 1a). In our

first attempts we used of the cylindrical coordinate

system successive in the case of horizontal cylinder

(Fig. 1b) for the hypoeutectic stream line description

(Fig. 1c). However, more profound study and the vi-

sualization (Fig. 2a) had been shown a failure of this

first attempt.

This is the reason why we decided to introduce the

special curvilinear coordinate system ð�; �mÞ based on the

stream line curves Si, shown in Fig. 2b and described in

details together with continuous maps, transformations

and final solution in papers [9,10]. We would like to

stress that each curve Si is not plain, by other words it is

not conic. The variety of the curves cover the conic

surface and parameterized by �m ¼ maxð�Þ.
2. The coordinate system and physical model

The isothermal lateral conic surface in Cartesian

coordinates is described by the equation
ed.
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Nomenclature

a thermal diffusivity (m2/s)

a function defined by Eq. (46)

A control surface, Fig. 5 and Eq. (22) (m2)

C coefficient in Nusselt–Rayleigh relation Eq.

(50) (dimensionless)

cp specific heat at constant pressure (J/(kgK))

D diameter of the cone base (m)

dAk control surface of heated wall, Fig. 5 and

Eq. (23) (m2)

E coefficient in Eq. (31)

f ¼ y00ð0Þ coefficient in the Taylor expansion of yð�Þ
F coefficient in Eq. (31)

g acceleration due to gravity (m/s2)

g ¼ y0ð0Þ coefficient in the Taylor expansion of yð�Þ
G coefficient in Eq. (31)

h heat transfer coefficient (W/(m2 K))

H length of the horizontal conic (m)

H coefficient in Eq. (31)

I current of the heater (A)

J constant defined by integral (52) (dimen-

sionless)

K constant in the relation (26) (dimensionless)

Nu ¼ hR
k ;¼ hD

k Nusselt number (dimensionless)

M arbitrary point of the conical surface

p pressure (N/m2)

P function defined by Eq. (46)

r ¼ q0K
1=3 dimensionless radius coordinate (dimen-

sionless)

R radius of the cone (m)

Q heat flow (W)

Ra ¼ gbDTR3

ma ;¼ gbDTD3

ma Rayleigh number (dimension-

less)

s unit vector, tangent to the curve S (dimen-

sionless)

S curve, being the convective fluid flow

streamlines on the lateral surface of the

horizontal conic (dimensionless)

T temperature (�C) or (K)

Tw wall temperature (�C)
T1 bulk fluid temperature (�C)
DT temperature difference (K)

U voltage of the heater (V)

W velocity (m/s)

x coordinate (m)

Xi constants in Eqs. (27)–(30) (dimensionless)

yð�Þ dimensionless boundary layer thickness (di-

mensionless)

y coordinate (m)

Y ¼ yð0Þ coefficient in the Taylor expansion of yð�Þ
z coordinate (m)

Z ¼ Y 4 function of the Y (dimensionless)

Greek symbols

a base angle of the conic (deg)

b average volumetric thermal expansion coef-

ficient (1/K)

d boundary layer thickness (m)

� angle defined in Fig. 2 (deg)

n distance between curves S (Fig. 5) (m)

k thermal conductivity of the fluid (W/(mK))

m kinematic viscosity (m2/s)

q radius defined in Fig. 3 (m)

qf density of the fluid (kg/m3)

r vector normal to the curve S (m)

s vector tangent to the curve S (m)

H nondimensional temperature (dimension-

less)

R lateral surface of the conic

Fig. 1. Free convective fluid flow pattern described by bound-

ary layer thickness (gray lines) and stream lines close heated

surface and in a plume (black lines) for: (a) vertical cones, (b)

horizontal cylinder and (c) horizontal conic.
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x2 þ y2 � z2 cot2ðaÞ ¼ 0; 06 z6H ð1Þ

or by q, e, z, where x ¼ q sinð�Þ, y ¼ q cosð�Þ (Fig. 3). The
base angle a is a parameter of the conical surface which

varied from a ¼ p=2––horizontal cylinder to a ¼ 0––

round vertical plate.

At arbitrary point Mi of the lateral conical surface R
one may distinguish two tangent vectors �ssq and �ss� and
normal �rr to the surface.

�ssq ¼
o�rr
oq

; �ss� ¼
o�rr
o�

where �rr ¼ ðx; y; zÞ 2 R; ð2Þ

�rr ¼ �ıı sin a sin �þ �jj sin a cos �� �kk cos a: ð3Þ

Decomposition of the gravity with respect to these

coordinates gives the normal component of gravity force

gr ¼ g sin a sin �, �gg ¼ ð�g; 0; 0Þ ¼ ��ııg.



Fig. 2. Result of the visualization of the stream lines on the

horizontal, isothermal conic transferred heat by free convection

(a) and the model of the phenomenon described by curvilinear

coordinate system (�; �m) with stream line curves Si (b).

Fig. 4. The illustration of the curve S construction: it is defined

as the vector �ss is tangent at every point of the curve S.
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Let us now define a tangent component of the grav-

ity. After normalization this component takes the form

�ss ¼ �gg � ð�gg; �rrÞ�rr
g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 a sin2 �

p
¼ ��ııð1� sin2 a sin2 �Þ þ �jj sin2 a sin � cos �� �kk cos a sin a sin �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sin2 a sin2 �
p :

ð4Þ
Fig. 3. Coordinate systems: Cartesian, curvilinear and local for

the conic.
This unit vector �ss defines the curve S on the surface

(Fig. 4). Hence the gravity component along �ss� �rr is

zero. That is why we solve the equations: Navier–Stokes,

Fourier–Kirchhoff and continuity in these two charac-

teristic directions �rr and �ss.
We use assumptions typical for natural convection [9]:

• fluid is incompressible and its flow is laminar,

• inertia forces are negligibly small in comparison with

viscosity ones,

• the mass density qf , kinematic viscosity m and volu-

metric expansion b in the boundary layer and undis-

turbed region (index 1) are constant,

• tangent to the heated surface component of the veloc-

ity inside the boundary layer is significantly larger

than normal one Ws � Wr. By this assumption two

marginal regions are excluded: the first where the

boundary layer arises � ¼ ��m and the second where

it is transferred into the free buoyant plum � ¼ �m.
• temperature of the lateral conical surface Tw is con-

stant,

• thicknesses of the thermal and hydraulic boundary

layers are the same.

Finally the Navier–Stokes equations may be written

m
o2Ws

or2
� gsbðT � T1Þ � 1

qf

op
os

¼ 0; ð5Þ

�grbðT � T1Þ �
1

qf

op
or

¼ 0: ð6Þ

The coordinates r and s are local ones along the

vectors �rr and �ss.
We evaluate the normal and tangent components of

gravity as

gr ¼ �rr � �gg ¼ �g sin a sin �; ð7Þ

gs ¼ g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 a sin2 �

p
: ð8Þ



Fig. 5. Presentation of the elementary control surfaces: A and

dAk , defined by Eq. (22) and (23) for the coordinate curves

Sðq0Þ and Sðq0 þ dq0Þ and the distance dn between them.
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We assumed that relation for temperature distribu-

tion inside boundary layer can be used as solution of

Fourier–Kirchhoff equation [12,13]

H ¼ T � T1
Tw � T1

¼ 1
�

� r
d

�2
or T � T1 ¼ DT 1

�
� r

d

�2
:

ð9Þ

Plugging (7)–(9) into (5) and (6) gives

m
o2Ws

or2
� gbDT 1

�
� r

d

�2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 a � sin �

p
� 1

qf

op
os

¼ 0:

ð10Þ

�gbDT sin a sin � 1
�

� r
d

�2
� 1

qf

op
or

¼ 0: ð11Þ

Integration of Eq. (11) for the boundary condition

r ¼ d, pr ¼ p1ðrP dÞ gives a formula for the pressure

distribution in a boundary layer directed tangent to the

heating surface.

pr ¼ �p1ðrP dÞ � qfgbDT sin a sin � r

�
� r2

d
þ r3

3d2
� d
3

�
:

ð12Þ

Pressure p1ðrP dÞ represents the excess of pressure

over the hydrostatic pressure, on the border of the

boundary layer, which, as it was shown in the paper [11],

is approximately constant.

Differentiating of Eq. (12) with respect to s along the

curve S (for the complete derivation of the curve equation

look [9]), parameterized by the minimum value q0 of q

q ¼ q0ðcos �Þ
� cos2 a ð13Þ

gives

op
os

¼ �qfgbDT sin a
ðcos �Þcos

2 aþ1

q0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 � sin2 a

p cos � r

��
� r2

d

þ r3

3d2
� d
3

�
þ sin �

r2

d

�
� 2r3

3d3
� 1

3

�
dd
d�

�
: ð14Þ

The parametrization of the curve S by q0 in (13) is

equivalent to the parametrization by

�m ¼ arcsin q0=R� p=2: ð15Þ

Plugging of the equality (14) into Eq. (10) leads to

m
o2Ws

or2
þ qfgbDT

8><
>:� 1

�
� r

d

�2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 a sin �

p

þ sin aðcos �Þcos
2 aþ1

cos �

q0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2ð�Þ sin2ðaÞ

q r

�
� r2

d
þ r3

3d2
� d
3

�

þ sin �
r2

d2

�
� 2r3

3d3
� 1

3

�
dd
d�

9>=
>; ¼ 0: ð16Þ
A double integration of Eq. (16) for the boundary

conditions Ws ¼ 0 at r ¼ 0, d and mean value evaluation

through boundary layer gives:

Ws ¼
1

d

Z d

0

Ws dr

¼ gbDTd2ðcos �Þcos
2 aþ1

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 � sin2 a

p
 

� 1� sin2 � sin2 a

40ðcos �Þcos2 aþ1

þ sin a cos �d
180q0

þ sin a sin �
72q0

dd
d�

!
ð17Þ

The account the law of energy conservation

dQ ¼ �qfcpðT � T1ÞdðAWsÞ; ð18Þ

where A is the cross-section area of the boundary layer

(see Fig. 5), after the substitution of the mean value of

the temperature: ðT � T1Þ ¼ DT
3
yields:

dQ ¼ � 1

3
qfcpDT dðAWsÞ: ð19Þ

The heat flux described by Eq. (19) should be equal to

the heat flux determined by the Newton�s equation (20):

dQ ¼ hDT dAk ¼ �k
oH
or

� �
r¼0

DT dAk ; ð20Þ

where dAk is the control surface of the conic (see Fig. 5).

The simplifying assumption of the temperature pro-

file inside boundary layer (9), the dimensionless tem-

perature gradient on the heated surface may be

evaluated as�
oH
or

�
r¼0

¼ � 2

d

leads to

1

6k
qfcpdd AWs

� 	
¼ �dAk : ð21Þ
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The definitions of the cross-sectional area and the con-

trol surface A and dAk are:

A ¼ dnd ¼ �ðcos �Þ1�cos2 a
dq0d

cos a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 a sin2 �

p ; ð22Þ

dAk ¼ dnds ¼ �ðcos �Þ�2�cos2 aq0 d�dq0

cos a
; ð23Þ

where

dn ¼ ½�rr



 � �ss�d�rr




 ¼ �ðcos �Þ1�cos2 a
dq0

cos a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 a sin2 �

p : ð24Þ

Substituting Eqs. (17), (22) and (23) in Eq. (21) and

evaluating the differentials one have

X3ðdd00 þ 3d02Þ þ ð4X2 þ X 0
3Þdd

0 þ X 0
2d

2 þ 3X1q0d
0

þ X 0
1q0d ¼ q2

0X4

Kd3
; ð25Þ

where

K ¼ RaR
240R3

¼ qfcp
240k

gbDT
m

; RaR ¼ gbDTR3

ma
ð26Þ

X1 ¼ �ðcos �Þ1�cos2 a
; ð27Þ

X2 ¼
2

9

ðcos �Þ3þcos2 a
sin a

ð1� sin2 a sin2 �Þ
; ð28Þ

X2 ¼
5

9

ðcos �Þ2þcos2 a
sin a sin �

ð1� sin2 a sin2 �Þ
; ð29Þ

X4 ¼ ðcos �Þ�2 cos2 a
: ð30Þ

Eq. (25) is the nonlinear ordinary differential equa-

tion to be considered as the basic one for free convection

heat transfer along the arbitrary curve S which family

covers the whole surface of isothermal horizontal conic.
3. Analytical approximate solution of the resulting equa-

tion

The resulting equation of the physical model could be

solved by a simple numerical method. We, however,

would apply analytical method to construct approxi-

mate formulas for the boundary layer thickness d as a

function of variables � and q0. Let us underline that our

choice of the coordinate system allows to consider q0 as

a parameter. Rescaling in (25) yð�Þ ¼ dK1=3, r ¼ q0K
1=3

yields:

y4ð�ÞE
o

oyð�Þ
o�

o�
þ 3y3ð�ÞE oyð�Þ2

o�
þ y3ð�Þ oyð�Þ

o�
G

þ y5ð�ÞH þ y4ð�ÞF

¼ r2ð1� sin2 a sin2 �Þ cos�2 cos2 a �: ð31Þ
where the coefficients are defined by

E ¼ X3ð1� sin2 a sin2 �Þ ¼ 5

9
cos2þcos2 a � sin a sin �; ð32Þ

G ¼ ½yð4X2 þ X 0
3Þ þ 3X1r�ð1� sin2 a sin2 �Þ

¼ 3ðcos1�cos2 a �Þrðcos2 �þ cos2 a� cos2 � cos2 aÞ

þ 8

9
ðcos3þcos2 a � sin aÞyð�Þ; ð33Þ

H ¼ X 0
2ð1� sin2 a sin2 �Þ

¼ 2

9

sin � sin a

sin2 a sin2 �� 1
cos2þcos2 a �ðsin2 � cos4 a

þ 3 cos2 aþ cos2 �Þ; ð34Þ

F ¼ X 0
1rð1� sin2 a sin2 �Þ

¼ r sin2 að1� sin2 a sin2 �Þ
coscos2 a �

sin �: ð35Þ

We consider an asymptotic solution as a power series

in the vicinity of the point � ¼ 0. This point is the sin-

gularity point of the equation: the coefficient by the

second derivative is equal to zero when � ¼ 0. The for-

mal Taylor series expansion is

yð�Þ ¼
X1
i¼0

ci�i ¼ Y þ g�þ f �2=2þ � � �

The coefficients of the expansion we determine di-

rectly from the differential equation (31) in the point

� ¼ 0. The equation gives connection of all coefficients

with the first one Y ¼ yð0Þ. This unique parameter is

defined via the boundary condition yð�mÞ ¼ 0 in the

point � ¼ �m ¼ arccosðq0=RÞ.
Let us evaluate the first derivative of yð�Þ at the point

ð� ¼ 0Þ. We start from Eq. (31) and solve it with respect

to:

g ¼ oyð�Þ
o�

� �
�¼0

¼ 9r2

ð27r þ 8ðsin aÞY ÞY 3
: ð36Þ

Next we should evaluate the second derivative of yð�Þ
at the point � ¼ 0. For this aim we differentiate Eq. (36)

and then solve the result with respect to:

f ¼
o

oyð�Þ
o�

o�

" #
�¼0

¼ �9
423r4ðsin aÞY þ 729r2ðr3 þ rY 8 sin2 aþ ðsin aÞY 9Þ

Y 7ð27r þ 13ðsin aÞY Þð27r þ 8ðsin aÞY Þ2

� 9
16Y 9ðsin2 aÞðY þ r sin aÞð4ðsin aÞY þ 27rÞ
Y 7ð27r þ 13ðsin aÞY Þð27r þ 8ðsin aÞY Þ2

:

ð37Þ

Details of the derivation of (36) and (37) are shown in

papers [9,10].
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Now we introduce the boundary condition at the

edge of the cone, where the boundary layer arises

yð��mÞ ¼ 0: ð38Þ

Here we restrict ourselves by parabolic approximation

for the asymptotic expansion of the solution y of the dif-

ferential equation of the boundary layer (31) in the form

yð�Þ ¼ Y þ g�þ 1

2
f �2: ð39Þ

Eq. (38) for the parameter Y is algebraic equation of

high order, which has no explicit solution. So we expand

the equation in Taylor series with respect to the variable

z ¼ Y sin a=r. In the region ð1=2ÞY sin a � r one have in
the first approximation

g ¼ 1

3

r
Y 3

; ð40Þ

f ¼ � 1

3

r2

Y 3
: ð41Þ

After substitution of (40) and (41) into Eq. (39) it

simplifies

Y 8 � 1

3
r arccosðq0=RÞY 4 � 1

6
r2 arccos2ðq0=RÞ ¼ 0: ð42Þ

Introducing the new variable Z ¼ Y 4 one goes to the

second-order equation Z2 � ð1=3Þr arccosðq0=RÞZ�
ð1=6Þr2 arccos2ðq0=RÞ ¼ 0.

Solution has two roots, the first one is negative, hence

non-physical and the second is positive, hence

Y ¼ Z1=4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

1

6
þ 1

6

ffiffiffi
7

p� �
r½p� 2 arcsinðq0=RÞ�

4

s
: ð43Þ

Finally the boundary layer thickness is

dð�Þ ¼ 240q0R
3

Ra

� �1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

12
ð1þ

ffiffiffi
7

p
Þ½p� 2 arcsinðq0=RÞ�

4

r0@
þ �

3 1
12
ð1þ

ffiffiffi
7

p
Þ½p� 2 arcsinðq0=RÞ�

� 	3=4
� �2

6 1
12
ð1þ

ffiffiffi
7

p
Þ½p� 2 arcsinðq0=RÞ�

� 	7=4
1
A:

ð44Þ

4. Integral heat transfer coefficient for practical applica-

tions

The solution (44) is local. However for practical ap-

plications one use the mean value of heat transfer co-

efficient, that is defined as the integral of the local value

over the whole body surface.

From Eq. (20) it follows that the local value of heat

transfer coefficient is
h ¼ 2k
d
: ð45Þ

Taking into account Eq. (15) the expression for

boundary layer thickness (44) may be rewritten as

dð�Þ ¼ R
240ðcos �mÞ

Ra

� �1=4

að�mÞ � P
�

�m

� �
; ð46Þ

where

að�mÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

6
ð1þ

ffiffiffi
7

p
Þ�m

4

r
;

P
�

�m

� �
¼ 1þ �

1
2
ð1þ

ffiffiffi
7

p
Þ�m

� �2

1
6
ð1þ

ffiffiffi
7

p
Þ2�2m

¼ 1

�
þ �

3a4
� �2

6a8

�
:

Taking into account above given transformations of

boundary layer thickness the local heat transfer coeffi-

cient h and it�s dimensionless form Nu are:

Nu ¼ h � R
k

¼ 2

ðcos �mÞ1=4að�mÞP �
�m

� � Ra
240

� �1=4

: ð47Þ

The mean value of Nusselt number for whole lateral

surface of horizontal conic S can be expressed by the

relation:

Num ¼ 2

S
Ra
240

� �1=4 Z p=2

0

Z �m

��m

1

ðcos �mÞ1=4að�mÞP �
�m

� � � dAk :

ð48Þ

Control surface of the cone dAk is described with the

use of q0 (13) and dq0 as the functions of �m (15):

dAk ¼ cos a � ðcos �Þ�2�cos2 a � R2 � sin �m
� ðcos �mÞ2 cos

2 a�1
d�m d�: ð49Þ

Plugging (49) into (48) leads to final relation

Num ¼ CR � Ra1=4; ð50Þ

where

CR ¼ 2

p
ðcos aÞ2 1

240

� �1=4

J ð51Þ

and

J ¼
Z p=2

0

sin �mðcos �mÞ2 cos
2 a�1

ðcos �mÞ1=4að�mÞ

 !

�
Z �m

��m

ðcos �Þ�2�cos2 a
d�

P �
�m

� �
0
@

1
Ad�m: ð52Þ

For practical application the obtained solution re-

quires evaluation of the double integral over the surface

J (52) which we made numerically. These calculations
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were performed for the following numbers of integration

steps: n ¼ 300, for the internal integral and p ¼ 150, for

the external one. The model of the boundary layer (44) is

simplified, the direct corollary of this is the deviation of

the asymptotic behavior of the local Nusselt number at

the vicinity of the point ��m, where the boundary layer

arises. The integral (52) is hence divergent in this point.

To regularize this discrepancy we integrate from the

starting step )147 in all calculations. The results of the

integral evaluations are: J ¼ 7:9359, 10.337, 14.885 and

25.692 for a ¼ 0, 30�, 45� and 60�, respectively, and next:

CR ¼ 0:6478, 0.6270, 0.6019 and 0.5194 for a ¼ 0, 30, 45

and 60 degrees for the radius of the cone base R as a

characteristic linear dimension in Nusselt–Rayleigh re-

lation (47) and (26). For comparison with experimental

results elaborated with the use of the diameter D ¼ 2R
as the characteristic linear dimension one can obtain:

CD ¼
ffiffiffi
24

p
� CR ¼ 0:763, 0.746, 0.716 and 0.618 for a ¼ 0,

30�, 45� and 60� respectively.
Fig. 6. Arrangement of the experimental apparatus and tested

conic (enlarged detail ‘‘a’’).
5. Experimental apparatus

The experimental studies were performed in two set-

ups using two fluids: distilled water and air. The both

set-ups consist of a Plexiglas tank in a form of a rect-

angular prism of the volume 150 dm3 for the water as a

test fluid and 200 dm3 for the air. The visualization of

convective flow structures was performed in the water

only while the quantitative experiments were made both

in the water and in the air for four cones: a ¼ 0 (vertical

round plate), p=6, p=4 and p=3. The investigated sam-

ples, excluding the vertical round plate ða ¼ 0Þ, consist
of two identical copper cones of the base diameter

D ¼ 0:1 m, that were joined in pairs according with Fig.

6 by the epoxy–resin (DISTAL). Each cone couple was

suspended in a horizontal position by the use of nylon

fishing twine of the diameter 0.1mm. In this way the heat

losses through the base or supports were eliminated. We

assumed that the heat losses through electric wiring were

negligible small. The electric resistor as a source of heat

was placed symmetrically inside the cavity of each

sample. The concept of performed experimental mea-

surement of a convective heat flux and the construction

of the round vertical plate of the diameter D ¼ 0:07 m

were different in comparison with the cone case. The

vertical plate of the sandwich layer construction con-

sisted of two circular copper plates and epoxy–resin

circular plate, of known thickness and heat conduc-

tion coefficient, between them was used in experi-

ments. In this case the back heat losses flux was

measured independently from temperature differences

on both sides of epoxide plate with respect to Fourier

equation. The thermal coefficient of conductivity for the

laminate (copper–epoxy–resin–copper) was experimen-

tally determined at a specially constructed stand. More
details for this case one can found in our previous paper

[14].

The surface of the cones were polished and next

covered by chromium (electroplating) because the radi-

ative heat losses have to be also taken into account in

the experiments performed in the air. In calculations the

emissive coefficient for the polished chromium was taken

from the physical constants tables.

At the top of the tanks a cooler with thermostatic

water of temperature equal to surrounding ±0.1 K was

mounted. To measure the surface temperature Tw of the

cones six transistors of the type BL 8473 were used. The

transistors inserted through the opening of diameter 1

mm drilled from the base were glued by epoxy–resin to

the surface of the cone. Also six transistors measured the

fluid temperature in the undisturbed region T1. The

temperatures of cone surfaces and fluids were calculated

as a average value of all the particular transistors Tw;i
and T1;i. The output signals from the transistors were

processed by a computer program.

Experimental determination of Nusselt number was

accomplished with an accuracy of ±6.6% for the water

and ±5.6% for the air. The accuracy of Rayleigh num-

bers evaluation were ±4.3% (water) and ±2.1% (air).

6. Experimental results

Experimental results obtained for the water (dark

points) and the air (white points) for the cones of the



Fig. 7. Comparison of the theoretical results (brown lines) with

the experiments (black line) performed in the air (white points)

and the water (dark points).
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base angle a ¼ 30�, 45� and 60� and analytical solution

(grey lines) are presented in Fig. 7. By using the least

square method the experimental data have been corre-

lated by Nusselt–Rayleigh relation NuD ¼ C � RanD for

given value of the exponent n ¼ 1=4. The results of these
approximations together with the present solutions and

literature data have been shown in Table 1. and in the

frames in Fig. 7.

The Nusselt–Rayleigh formulas in Table 1 are valid

for the range of the performed experimental studies:

6� 105 < Ra < 2� 108 for air and 1� 107 < Ra <
2� 108 for water which was obtained at wall-to-liquid

temperature differences 9 K6DT 6 43 K for air and 0.7

K6DT 6 9 K for water.

The experimental results are presented once more in

Fig. 8 in the form of C ¼ NuD=Ra
1=4
D vs. a so as the very

point in the Fig. 8 is now the average of the results for all

cases shown in frames in Fig. 7. These points together

with literature data [14–17] were approximated by the

second-order spline curve (grey line) described mathe-

matically by the expression placed in the lower frame.

The black line of Fig. 8 is also the second-order spline
line but for the theoretical results, obtained by numerical

evaluation of the integral (52).

As one can see the theoretical solution is convergent

with experiments for vertical round plate a ¼ 0� and for

horizontal cone of the base angle a6 60�. For the cones
of the base angle a between 60� and 90� (horizontal

cylinder) there is a divergences. It is a consequence of the

use of the simplified asymptotic method of solution of

Eq. (44).

The constants in Nusselt–Rayleigh experimental

correlations recalculated for D as a characteristic linear

dimension: Cexp ¼ 0:749 for a ¼ 30�, Cexp ¼ 0:742 for

a ¼ 45� and Cexp ¼ 0:677 for a ¼ 60�, differs from the

present solutions: Ctheor ¼ 0:746 for a ¼ 30�, Ctheor ¼
0:716 for a ¼ 45� and Ctheor ¼ 0:618 for a ¼ 60� of

about: +0.4% for a ¼ 30�, +3.5% for a ¼ 45� and )8.2%
and +8.7% for a ¼ 60�. This comparison can be re-

garded as a positive result of verification of obtained

solution.
7. Conclusions

The results of the own experimental measurements

and literature data of the free convective heat transfer in

unlimited space of water and air from horizontal conics

for the range of temperature differences 9 K6DT 6 43

K for air and 0.7 K6DT 6 9 K for water and Rayleigh

numbers 6� 105 < Ra < 2� 108 for air and 1� 107 <
Ra < 2� 108 for water are presented by the spline curve

of the second-order for the base angle of the cone

06 a6 90 deg. The spline function has the form:

Cexp ¼ 0:672þ 3:959� 10�9a� 5:836� 10�5a2.
The theory elaborated in this paper is based on the

typical for natural convection assumptions and cover all

conditions described above. The resulting differential

equation of the theory (25) is one-dimensional in the

coordinate system that was specially constructed to ac-

count the geometry of horizontal cones and the gravi-

tational field.

The obtained approximate solution describes con-

vective heat transfer over horizontal isothermal conic in

unlimited space. The structure of boundary layer that

define the heat transfer and streamlines near the conical

surface is described by the Taylor series near the points

at � ¼ 0. In this paper we present the solution based only

on the first three terms of series. The approximate

method of solution of the differential equation for

boundary layer thickness in principle does not allow to

obtained the correct description of the thickness in the

vicinity of the starting point � ¼ ��m. The consequence

of this is the divergence of the integral (52) that define

the mean value of heat transfer coefficient. For all the

cases of conic angles a we used universal approach of

regularization of the integral.



Table 1

Comparison of own and literature theoretical and experimental results of free convective heat transfer from horizontal cones

Case Criterial relations Notes

a ¼ 0� round vertical plate Nu ¼ 0:763 � Ra1=4 Present solution

Nu ¼ 0:587 � Ra1=4 Experiment of vertical round plate of

diameter D ¼ 0:07 m, water, [14]

Nu ¼ 0:655 � Ra1=4 Experiment of vertical round plate of

diameter D ¼ 0:07 m, air, [14]

Nu ¼ 0:699 � Ra1=4 Numerical calculations, FLUENT/UNS

program for round plate and air, [14]

a ¼ 30� Nu ¼ 0:746 � Ra1=4 Present solution

Nu ¼ 0:771 � Ra1=4 Experiment in air for D ¼ 0:1 m

Nu ¼ 0:727 � Ra1=4 Experiment in water for D ¼ 0:1 m

Nu ¼ 0:749 � Ra1=4 Mean experimental correlation elaborated for

air and water

a ¼ 45� Nu ¼ 0:716 � Ra1=4 Present solution

Nu ¼ 0:745 � Ra1=4 Experiment in air for D ¼ 0:1 m

Nu ¼ 0:738 � Ra1=4 Experiment in water for D ¼ 0:1 m

Nu ¼ 0:742 � Ra1=4 Mean experimental correlation elaborated for

air and water

a ¼ 60� Nu ¼ 0:618 � Ra1=4 Present solution

Nu ¼ 0:685 � Ra1=4 Experiment in air for D ¼ 0:1 m

Nu ¼ 0:669 � Ra1=4 Experiment in water for D ¼ 0:1 m

Nu ¼ 0:677 � Ra1=4 Mean experimental correlation elaborated for

air and water

a ¼ 90� horizontal cylinder Nu ¼ 0:480 � Ra1=4 Experimental results of horizontal cylinders

[15]

Nu ¼ 0:518 � Ra1=4 Experimental results of horizontal cylinders

[16,17] for Pr ! 1
Nu ¼ 0:599 � Ra1=4 Experimental results of horizontal cylinders

[16,17] for Pr ! 0

Fig. 8. Comparison of the own and literature experimental

results described by CD ¼ NuD=Ra
1=4
D (points and gray line) with

analytical solution (black line).
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Eventually the discrepancy in the result of calcula-

tions is connected with this. We plan to improve this

point of the theory by matching of two asymptomatic

for both singular points � ¼ 0, � ¼ ��m. The algorithm

described in the article allows to account arbitrary

number of such terms in the Taylor series near the points

at � ¼ 0 and hence improve the heat transfer description.
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